Mechanobiology of soft skeletal tissue differentiation--a computational approach of a fiber-reinforced poroelastic model based on homogeneous and isotropic simplifications.
نویسندگان
چکیده
The material properties of multipotent mesenchymal tissue change dramatically during the differentiation process associated with skeletal regeneration. Using a mechanobiological tissue differentiation concept, and homogeneous and isotropic simplifications of a fiber-reinforced poroelastic model of soft skeletal tissues, we have developed a mathematical approach for describing time-dependent material property changes during the formation of cartilage, fibrocartilage, and fibrous tissue under various loading histories. In this approach, intermittently imposed fluid pressure and tensile strain regulate proteoglycan synthesis and collagen fibrillogenesis, assembly, cross-linking, and alignment to cause changes in tissue permeability (k), compressive aggregate modulus (H(A)), and tensile elastic modulus (E). In our isotropic model, k represents the permeability in the least permeable direction (perpendicular to the fibers) and E represents the tensile elastic modulus in the stiffest direction (parallel to the fibers). Cyclic fluid pressure causes an increase in proteoglycan synthesis, resulting in a decrease in k and increase in H(A) caused by the hydrophilic nature and large size of the aggregating proteoglycans. It further causes a slight increase in E owing to the stiffness added by newly synthesized type II collagen. Tensile strain increases the density, size, alignment, and cross-linking of collagen fibers thereby increasing E while also decreasing k as a result of an increased flow path length. The Poisson's ratio of the solid matrix, nu(s), is assumed to remain constant (near zero) for all soft tissues. Implementing a computer algorithm based on these concepts, we simulate progressive changes in material properties for differentiating tissues. Beginning with initial values of E=0.05 MPa, H(A)=0 MPa, and k=1 x 10(-13) m(4)/Ns for multipotent mesenchymal tissue, we predict final values of E=11 MPa, H(A)=1 MPa, and k=4.8 x 10(-15) m(4)/Ns for articular cartilage, E=339 MPa, H(A)=1 MPa, and k=9.5 x 10(-16) m(4)/Ns for fibrocartilage, and E=1,000 MPa, H(A)=0 MPa, and k=7.5 x 10(-16) m(4)/Ns for fibrous tissue. These final values are consistent with the values reported by other investigators and the time-dependent acquisition of these values is consistent with current knowledge of the differentiation process.
منابع مشابه
A fiber-reinforced Transversely Isotropic Constitutive Model for Liver Tissue
Biomechanical properties of soft tissue, such as liver, are important in modeling computer aided surgical procedures. Experimental evidences show that liver tissue is transversely isotropic. In this article, considering the liver tissue as an incompressible fiber-reinforced composite with one family of fibers, an exponential strain energy function (SEF) is proposed. The proposed SEF is based on...
متن کاملSensitivity Analysis of Fiber-Reinforced Lamina Micro-Electro-Mechanical Switches with Nonlinear Vibration Using a Higher Order Hamiltonian Approach
In this paper, the nonlinear free vibration of fiber-reinforced lamina micro-switches is investigated, and a sensitivity analysis (SA) is given. The switches are modeled as solid rectangular beams consisting of an isotropic matrix with transversely and longitudinally isotropic reinforcements, incorporating a higher order Hamiltonian approach. An SA of the proposed micro-switch is presented by c...
متن کاملMechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair.
A number of mechano-regulation theories have been proposed that relate the differentiation pathway of mesenchymal stem cells (MSCs) to their local biomechanical environment. During spontaneous repair processes in skeletal tissues, the organisation of the extracellular matrix is a key determinant of its mechanical fitness. In this paper, we extend the mechano-regulation theory proposed by Prende...
متن کاملDispersion of Love Wave in a Fiber-Reinforced Medium Lying Over a Heterogeneous Half-Space with Rectangular Irregularity
This paper concerned with the dispersion of Love wave in a fiber-reinforced medium lying over a heterogeneous half-space. The heterogeneity is caused by the consideration of quadratic variation in density and directional rigidity of lower half-space. The irregularity has been considered in the form of rectangle at the interface of the fiber-reinforced layer and heterogeneous half-space. The dis...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomechanics and modeling in mechanobiology
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2003